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1 Introduction

It is standard practice in empirical macroeconomics to report estimates of impulse response func-

tions based on structural vector autoregressive (VAR) models (see Kilian and Lütkepohl 2017).

Applied users are typically interested in the shape of the impulse response functions. Key questions

include whether the responses are hump shaped, delayed or sluggish, for example (e.g., Cochrane

1994; Woodford 2003; Eichenbaum and Evans 1995). Applied users are also often interested in

the comovement of the responses across model variables (e.g., Blanchard 1989; Sims and Zha 1999;

Inoue and Kilian 2016). These questions cannot be answered by studying one impulse response

at a time, but require inference about the vector θ of impulse responses obtained by stacking all

impulse responses of interest.

In this paper, we provide a unified approach to the evaluation of vectors of structural impulse

responses from a Bayesian point of view. Our approach differs conceptually and practically from

the established practice in this literature. Our first main contribution is to use Bayesian decision

theory to formally derive estimators of the impulse response vector θ under commonly used loss

functions including absolute loss, quadratic loss and Dirac delta loss, building on Bernardo (2010).

These estimators take the form θ̂ = arg minEθ[L(θ, θ)], where θ denotes an action and L(θ, θ) the

loss function. Such estimators are new to the VAR literature and can be easily implemented in

typical applications. We also show how these estimators can be made more robust to changes in

the scaling of the data and of the impulse responses, and we discuss how to address the problem of

the potential nonuniqueness of the estimator.

We demonstrate that conventional estimators of θ such as the posterior median response func-

tion, defined as the vector of medians obtained from the marginal posterior distribution of each

individual impulse response, as well as analogously defined posterior mean response functions are

not in general the Bayes estimator of θ under additively separable absolute and quadratic loss,
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respectively. Only in the special case when the number of structural impulse responses (nirf ) does

not exceed the number of structural model parameters (np) do they coincide with the Bayes esti-

mator in the limit, as the number of posterior draws approaches infinity. This result follows from

the fact that, for any additively separable loss function,

Eθ[L(θ, θ̄)] =

∫
L1(θ1, θ̄1)f(θ)dθ + · · ·

∫
Lnirf (θnirf , θ̄nirf )f(θ)dθ

=

∫
L1(θ1, θ̄1)f1(θ1)dθ1 + · · ·

∫
Lnirf (θnirf , θ̄nirf )fnirf (θnirf )dθnirf

= Eθ1 [L1(θ1, θ̄1)] + · · ·+ Eθnirf [Lnirf (θnirf , θ̄nirf )]

where f(·) denotes the joint density of θ, fi(·), i = 1, ..., nirf , denotes the marginal density with

respect to the ith element of θ, and nirf ≤ np is used in the second equality.

In contrast, when nirf > np, as is the case in typical empirical applications, posterior median

response functions and mean response functions even in the limit are not the Bayes estimator

of θ. We provide analytical examples that illustrate that posterior median and mean response

functions in this setting may imply impulse response function shapes that differ from the shape of

the response function under any possible parameterization of the underlying autoregressive model.

Our analysis articulates more precisely concerns first raised in Fry and Pagan (2011), Kilian and

Murphy (2012) and Inoue and Kilian (2013) that median response functions tend to conflate the

dynamic responses implied by different structural models as well as their comovement, calling into

question the economic interpretation of the posterior median response function.

We conclude that the practice of reporting posterior median (or mean) response functions in

applied work, which has been standard in the Bayesian VAR literature for the last four decades,

is inconsistent with the objectives of most applied users who are interested in the dynamics of

the responses across horizons and across model variables and may be misleading in practice. Our
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results also show that Baumeister and Hamilton’s (2018) claim that the posterior median response

function is optimal from a decision theoretic point of view does not apply to θ in general. This is

not to dispute that posterior median (and mean) response functions are valid summary statistics

for the central tendency of the marginal impulse response posterior distributions, but this result is

of limited use because there are few (if any) examples of economically interesting questions that

can be answered based on these statistics.

Our second main contribution is to consider joint credible sets constructed under the same loss

function used in deriving the estimator of θ, building on the work of Bernardo (2010). It is well

known that conventional Bayesian error bands, defined as vectors of upper and lower quantiles of the

marginal impulse response posterior distributions, misrepresent the estimation uncertainty about

estimates of impulse response vectors. This point is neither new nor controversial.1 It is widely

documented in the Bayesian literature, and it applies to both point identified and set-identified

models (e.g., Sims and Zha 1999; Inoue and Kilian 2013). Analogous concerns have been raised in

the growing frequentist literature on simultaneous confidence regions for impulse responses (e.g.,

Lütkepohl, Staszewska-Bystrova and Winker 2015a,b, 2018; Inoue and Kilian 2016; Bruder and

Wolf 2018; Montiel Olea and Plagborg-Møller 2019). Our analysis reinforces the central message

of this literature.

We propose a new approach to the construction of joint credible sets for structural impulse

responses that can be adapted to any of the loss functions of interest.2 Our joint credible set is

defined as the lowest posterior risk region
{
θ ∈ Θ : Eθ[L(θ, θ)] ≤ c1−α,L

}
, where c1−α,L denotes the

1As noted by Sims and Zha (1999), bands constructed by “connecting the dots”tend to be misleading because it is
extremely unlikely in economic applications that the uncertainty about the impulse response estimates is independent
across horizons. Moreover, as emphasized in Inoue and Kilian (2016) and Kilian and Lütkepohl (2017), the dependence
across impulse responses matters not only for conducting joint inference across a range of horizons for a given impulse
response function, but it matters equally for conducting joint inference about multiple impulse response functions.

2 In related work, Montiel Olea and Plagborg-Møller (2019) propose a simultaneous credible band for impulse
response functions based on the product of component-wise equal-tailed credible intervals, where the tail probability
has been calibrated to yield simultaneous credibility 1− α.
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smallest number such that the posterior probability of the credible set is 1− α. We show that this

joint credible set may be graphically represented analogous to a shot-gun trajectory plot in ballistics,

preserving information about likely departures from the estimated path of θ that is discarded when

constructing joint error bands. Different colors may be used to highlight information contained in

these credible sets about the shape of the response functions and their comovement. This approach

allows us to directly addresses the concern raised in Sims and Zha (1999, p. 1113) that conventional

error bands do not provide much information about the deviations from the estimate of the response

function that are most likely.

The remainder of the paper is organized as follows. In section 2, we discuss estimation and

joint inference under absolute and quadratic loss. We also compare our approach to pointwise

inference under absolute and quadratic loss, and we illustrate why the conventional approach in

the literature can be misleading. The key difference between our approach and conventional median

and mean response functions can be summarized as follows. The impulse response vector, θ = g(λ),

is a vector-valued function that maps from the space Λ ⊂ <np of the underlying structural VAR

parameters, λ ∈ Λ, to the space Θ ⊂ <nirf of the structural responses. Note that this function is

surjective on the co-domain Θ = g(Λ), but not on its complement Θc.3 For concreteness, suppose

that the loss function is additively quadratic and denote the data by Y . Then the conventional

optimal Bayes decision, ˜̄θ = [Eθ1(θ1|Y ) Eθ2(θ2|Y ) · · · Eθnirf (θnirf |Y )]′ for pointwise inference,

known as the mean response function, minimizes Eθ1 [(θ̄1 − θ1)2|Y ] + Eθ2 [(θ̄2 − θ2)2|Y ] + · · · +

Eθnirf [(θ̄nirf − θnirf )2|Y ] for all θ̄ ∈ <nirf , where the expectation is taken with respect to the

marginal posterior distributions of θ. In contrast, the optimal Bayes decision proposed in this

paper, denoted θ̂, minimizes Eθ
[∥∥θ − θ∥∥2 |Y

]
, where the expectation is taken with respect to the

joint posterior distribution of θ and ‖·‖ denotes the Euclidian norm, among all θ ∈ Θ, for which
3A function g from a set Λ to a set Θ is surjective, if for every element θ in the codomain Θ of g, there is at least

one element λ in the domain Λ of g such that g(λ) = θ. It is not required that λ be unique; the function g may map
one or more elements of Λ to the same element of Θ.
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there exists a λ in Λ such that g(λ) = δ. Although the loss function in our analysis is the same as

in the conventional approach, the constraint set is different. By construction, our optimal solution

θ̂ always belongs to Θ, so there always exists a λ̂ ∈ Λ such that θ̂ = g(λ̂). This is not the case for

the conventional estimator. If θ̃ belongs to Θ, there exists λ̃ ∈ Λ such that θ̃ = g(λ̃) = Eθ(θ|Y )

because g is surjective on Θ. In contrast, if θ̃ belongs to Θc, θ̂ will differ from θ̃ = Eθ(θ|Y ). We

demonstrate in section 2 that, when nirf > np, Θ is of measure zero in <nirf and hence, with

probability one, there is no λ̃ ∈ Λ such that θ̃ = g(λ̃). Thus, the two estimators differ in general.

Only θ̂ is the Bayes estimator in this setting. Analogous arguments apply to the median response

function under additively separable absolute loss.

In section 3, we discuss joint estimation and inference under Dirac delta loss. This approach was

originally proposed by Inoue and Kilian (2013, 2019). That study showed how to rank posterior

draws for structural VAR models based on the joint posterior density of the structural impulse

responses when nirf = np. Closed-form solutions for this density can be derived analytically,

facilitating the implementation of this approach. Inoue and Kilian (2013) did not consider the

case of nirf < np or of nirf > np. In this paper, we generalize this approach to allow for arbitrary

combinations of nirf and np. In addition, we allow for the possibility that some or all of the response

functions may be cumulated. We also extend the original analysis to allow for nonrecursive models

with short-run exclusion restrictions, long-run exclusion restrictions, or combinations of sign and

exclusion restrictions, as discussed in Arias, Rubio-Ramirez and Waggoner (2018). Especially, the

latter situation is increasingly important in applied work for modeling the transmission of global

shocks to domestic economies and for modeling economies with frictions (e.g., Mumtaz and Surico

2009; Mountford and Uhlig 2009; Aastveit, Bjørnland and Thorsrud 2015; Beaudry, Nam and

Wang 2018; Kilian and Zhou 2020a,b). In contrast, the original analysis in Inoue and Kilian (2013)

only allowed for recursively identified models and models identified by sign restrictions. Finally,
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our analysis also allows for narrative restrictions, as discussed in Antolin-Diaz and Rubio-Ramirez

(2018). Such inequality restrictions are increasingly used in sign-identified VAR models (e.g., Kilian

and Zhou 2020a,b). We achieve this added generality by exploiting a new approach to deriving

a closed-form solution for the joint posterior density function of the structural impulse responses

that builds on results in Arias, Rubio-Ramirez and Waggoner (2018).

In Section 4 we propose a new loss function, referred to as angular loss, that is robust to

the scale of the data as well as the scale of the structural shocks used in defining the impulse

responses. We derive the Bayes estimator and joint credible sets based on this loss function. In

our empirical applications, the estimates implied by this loss function are quite similar to those for

other loss functions. We also address the concern that the optimal estimator may not be unique,

adapting a proposal by Chernozhukov, Hong and Tamer (2007). Empirical applications suggest

that nonuniqueness is not a problem in practice.

Section 5 contains two empirical illustrations that illustrate the use of the methods proposed

in this paper. Our empirical examples illustrate that the standard practice of reporting pointwise

impulse response error bands based on vectors of the α/2 and 1− α/2 probability quantiles of the

marginal posterior distributions of the impulse responses tends to grossly understate the estimation

uncertainty about θ. We also find that there may be differences, in practice, between posterior

median (and mean) response functions and the Bayes estimators of θ under absolute and under

quadratic loss. The concluding remarks are in section 6.

2 Joint inference under absolute and under quadratic loss

The Bayesian estimate of a parameter is defined as the parameter value that minimizes in expec-

tation the loss of the user. In the interest of clarity, we note that the choice of the loss function for

impulse response analysis is subjective and that estimators derived under one loss function need
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not be optimal under another. Our point in this paper is not to argue for one loss function over

another. Instead, in this section and the next, we present results for three commonly used loss

functions (absolute, quadratic and Dirac delta loss). We leave it to the applied user to choose

among these loss functions.

It is useful to first discuss joint impulse response inference under absolute and under quadratic

loss, before turning to the Dirac delta loss function. The techniques discussed in this section may be

applied to impulse responses in scalar autoregressions as well as in structural vector autoregressions.

Let θ denote the nirf -dimensional vector of unknown impulse responses obtained by appropriately

stacking the impulse responses of interest. In a fully identified n-dimensional structural VAR

models, for example, nirf = n2(H + 1), since there are n2 impulse response functions for horizon

h = 0, 1, 2, ...,H. θ ∈ Θ, where Θ is the set of all structural impulse response vectors that satisfy

the identifying restrictions imposed on the structural VAR model.

We abstract from the details of the construction of θ, which may differ from one structural VAR

model to another, because our analysis does not depend on these details (see Kilian and Lütkepohl

2017). The space Θ may be approximated by drawing from the posterior of the model parameters

and simulating the distribution of the structural impulse responses that are consistent with the

identifying assumptions. We first derive Bayes estimators of this impulse response vector under

absolute and under quadratic loss. We then discuss how to construct joint credible sets for this

estimator under the same loss function.

2.1 Constructing the impulse response estimator

Let L(θ, θ) denote a loss function that maps Θ×Θ to < such that

θ̂ = argminθ∈ΘEθ[L(θ, θ)], (1)
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where θ ∈ Θ denotes an action. It is assumed for now that there exists a unique minimum and

that the expectation is with respect to the joint posterior distribution of θ over Θ. Our analysis in

this section focuses on the loss functions

L(θ, θ) =


∑nirf

j=1 (θj − θj)2 (quadratic loss)∑nirf
j=1 |θj − θj | (absolute loss)

, (2)

where θj and θj are the jth elements of θ and θ, respectively.

In practice there is no closed-form solution to (1), so we need to approximate the solution by

simulation. The Bayes estimator is given by

θ̂M = argmin
θ∈Θ̂M

1

M

M∑
i=1

L(θ(i), θ), (3)

where θ(i) is the ith posterior draw and Θ̂M consists of M posterior draws. Specifically, under the

quadratic (QL) and under the absolute loss function (AL), respectively,

θ̂
QL

M = argmin
θ∈Θ̂M

1

M

M∑
i=1

nirf∑
j=1

(θ
(i)
j − θj)

2, (4)

θ̂
AL

M = argmin
θ∈Θ̂M

1

M

M∑
i=1

nirf∑
j=1

|θ(i)
j − θj |, (5)

where θ(i)
j denotes the jth element of the ith draw of θ, denoted θ(i), from its posterior distribution.

2.2 Comparison with conventional posterior median (or mean) impulse re-
sponse functions

The key difference from the conventional median or mean response functions in the literature is

that the solution θ̂M is always contained in the set of structural impulse responses that can be

obtained by drawing from the posterior of θ. This is true for any combination of p and H. In
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contrast, in the empirically relevant case when the number of estimated structural responses (nirf )

exceeds the number of estimated structural model parameters (np), the posterior median response

function will not necessarily be contained in Θ, even as the number of posterior draws approaches

infinity. The reason is that in this case the posterior distribution of the structural impulse response

functions is defined over a lower-dimensional manifold. Our analysis recognizes that the space of θ

may be a lower dimensional smooth manifold, whereas the conventional approach postulates that

it is the Euclidian space. This fact does not change the posterior distribution for the structural

model parameters, but it affects inference about θ.

Even when nirf ≤ np, the vector of marginal posterior medians will coincide with θ̂M only

as the number of posterior draws approaches infinity. When nirf > np, the vector of pointwise

medians obtained from the marginal posterior distributions does not solve expression (1) even in

the limit. Thus, the posterior median response function is not the Bayes estimator of θ under

absolute loss. Analogous results hold under quadratic loss for the mean response function, defined

as the vector of pointwise means from the marginal posterior impulse response distributions. This

point is illustrated by the following stylized example.

Consider estimating the scalar-valued Gaussian AR(1) model

yt = ρyt−1 + ut, (6)

ut
iid∼ N(0, 1), (7)

from the observations y0, y1, ..., yT with a diffuse conjugate Gaussian prior. Then, conditional on

y0, the posterior distribution of ρ is

ρ ∼ N

(
ρmean,

1

nT

)
, (8)
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where ρmean =
∑T

t=1 ytyt−1

/∑T
t=1 y

2
t and nT =

∑T
t=1 y

2
t−1.

2.2.1 The Conventional Approach

For expository purposes, we consider the reduced-form impulse response function. With a slight

abuse of notation, denote this impulse response vector by θ. Focusing on the reduced-form responses

allows us to isolate the essence of the problem with the conventional approach, which is unrelated to

the uncertainty about the error variance. Since the response to a unit shock at horizon 0 is known

to be 1, we focus on higher horizons. Suppose that we are interested in joint inference at horizons

1 and 2 only. Then θ = [ρ, ρ2]. In the context of this example, the condition that nirf > np in a

structural VAR model translates to the number of estimated reduced-form responses, which is 2 in

this example, exceeding the lag order of 1.

We consider first the posterior mean response function and then the posterior median response

function. The posterior mean response function is

[
ρmean, ρ

2
mean +

1

nT

]
. (9)

By construction, there is no possible value of ρ in the AR(1) model such that θ = [ρ, ρ2] produces

the posterior mean response function because 1/nT > 0.

Next, let ρmedian denote the posterior median of ρ, where ρmedian = ρmean under our

assumptions. Because

P (ρ2 ≤ x) = P (−
√
x ≤ ρ ≤

√
x)

= Φ
(√
nT (
√
x− ρmedian)

)
− Φ(

(√
nT (−

√
x− ρmedian)

)
, (10)
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it is always true that

P (ρ2 ≤ ρ2
median) <

1

2
. (11)

In other words, the square of ρmedian is not the posterior median of ρ
2. Thus, the posterior median

response function can be written as

[
ρmedian, ρ

2
median + η

]
, (12)

where η > 0. By inspection, there is no value of ρ in the AR(1) model such that the posterior

median response function matches the actual impulse response function θ = [ρ, ρ2]. In contrast,

the Bayes estimator θ̂M satisfies this constraint by construction. Note that these results do not

depend on the choice of the prior or the specification of the Bayesian model.

The fact that the conventional posterior mean and median response functions in this example

fail to recover θ̂M calls into question the claim that the posterior median response function is

necessarily optimal under the loss function
∑k

i=1 |θi−θi| (see Baumeister and Hamilton 2018). The

reason that we reach a different conclusion is not that we changed the loss function. Rather the

difference is about the range over which to integrate when computing the expected loss. Whereas

we restrict ourselves to the set of impulse response functions contained in Θ, the conventional

approach considers in addition infeasible solutions not contained in Θ.4

2.2.2 Why mean and median response functions may be misleading

It may seem that it is a matter of taste whether to restrict the minimization problem for θ to

elements of Θ or not. We would argue that it is not. The reason why we do not find the conventional

4 It may be tempting to argue that the conventional solution for θ is preferred because in this AR(1) example it
generates the same expected loss at h = 1 and lower expected loss at h = 2. This argument would be misleading
because the conventional solution only reduces the expected loss by violating the constraint that solutions for θ must
be feasible.
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formulation of the minimization problem underlying the Bayes estimator of θ compelling is that

the construction of the statistics reported in econometrics should reflect the preferences of applied

users. It is widely recognized there is no point in econometricians exploring loss functions that are

at odds with the objectives of applied users. Likewise, there is no point in defining the space of

possible solutions in impulse response analysis in a way that conflicts with the objectives of applied

users.

In many studies it is the shape of the response function that users of structural VAR models

are most interested in. For example, macroeconomists are often interested in whether the response

function for real output to demand shocks is hump shaped or not (e.g., Cochrane 1994). Likewise,

many macroeconomists have abandoned frictionless neoclassical models and adopted models with

nominal or real rigidities based on VAR evidence of sluggish or delayed responses of inflation and

output (e.g., Woodford 2003). Similarly, users of structural VAR models in international economics

tend to be interested in whether there is delayed overshooting in the response of the exchange rate

to monetary policy shocks (e.g., Eichenbaum and Evans 1995).

Moreover, many empirical questions can only be answered by considering several impulse re-

sponse functions in conjunction. For example, the question of whether a global oil price shock

creates stagflation in the domestic economy by necessity involves studying the responses of infla-

tion as well as real output. Likewise, researchers interested in the effects of a U.S. monetary policy

shock care about the responses of both real output and inflation because the loss function of the

Federal Reserve depends on both real output and inflation, making it necessary to consider these

response functions jointly. Another good example is Blanchard (1989). This study uses a macro-

economic VAR model to evaluate the implication of standard Keynesian models that (1) positive

demand innovations increase output and decrease unemployment persistently, and (2) that a favor-

able supply shock triggers an increase in unemployment without a decrease in output. Similarly,
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Sims and Zha (1999) stress that it is often thought that plausible patterns of the response of the

economy to a disturbance in monetary policy should have interest rates rising, the money stock

falling, output falling and prices falling.

Thus, it is fair to say that most applied researchers are interested in the shape of impulse

response functions and in the comovement across impulse response functions. This fact is important

because the rationale for median and mean response functions is based on the implicit premise

that applied users are not interested in the shape of a given impulse response function (or in the

comovement across impulse response functions). It is this premise that motivates the conventional

approach of minimizing the expected loss of the response function θ over the Euclidian space rather

than over Θ.

Our concern with this approach is that it is not possible to answer questions about the shape of a

given impulse response function based on statistics that do not preserve the dynamics of the impulse

response function implied by the underlying autoregressive model. Likewise, it is not possible to

evaluate the comovement across the response functions contained in θ based on statistics that do not

replicate the comovement implied by the underlying autoregressive model. As a result, computing

median or mean response functions may mislead the applied user about the shape of the response

function, which is of foremost interest in applied work, and more generally the comovement across

response functions in multivariate models. This point is best illustrated by example.

Consider the same AR(1) model that served as our example earlier. As before, the posterior

distribution of the slope parameter ρ is N
(
ρmean,

1
nT

)
, conditional on the data. Let the impulse

response horizons of interest be h = 1, 2, 3, 4. Then the posterior mean of θ =
[
ρ, ρ2, ρ3, ρ4

]
is given

by

[
ρmean, ρ

2
mean + 1/nT , ρ

3
mean + 3ρmean/nT , ρ

4
mean + 6ρ2

mean/nT + 3/n2
T

]
,
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where we make use of the fact that ρ = ρmean + z/
√
nT with z ∼ N(0, 1). For example, let

ρmean = 0.7 and nT = 5. Then the mean impulse response function is [0.70, 0.69, 0.76, 0.95]. In

other words, the posterior mean response function implies that the response is initially falling, but

increasing at longer horizons. This pattern is inconsistent with any value 0 < ρ < 1 including

ρ = ρmean = 0.7 because in this case the response function is strictly decreasing with the horizon.

It is also inconsistent with ρ = 1 or ρ = 0 because in this case the response function is flat and with

ρ > 1 because in this case the response function is strictly increasing with the horizon. Finally, it

is inconsistent with ρ < 0 because the mean response is positive at horizon 1. Thus, there is no

possible value of ρ that could generate the posterior mean response function. This makes the mean

response function misleading as an estimator of the vector θ.

Similar problems arise with the posterior median response function. Figure 1 shows an example,

in which the median response function follows an irregular pattern that is clearly inconsistent with

the shape of the impulse response function in the AR(1) model for any possible value of ρ. A user

of this posterior median response function would be tempted to conclude that the response function

has a shape that is clearly inconsistent with the posited AR(1) model.

These two examples show that mean and median response functions cannot be trusted to capture

the shape of the impulse response function. Since in higher-dimensional models all impulse response

functions of interest are stacked into the vector θ, the same concern applies in the structural VAR

setting. Clearly, one cannot trust median or mean response function to capture the dynamics of θ

in structural VAR(p) models, when these statistics cannot even capture the shape of the response

function in the much simpler AR(1) model.5

5 It should be noted that it is possible to further weight individual elements of θ in the loss function, depending
on the variable of interest and the horizon of the response function. For example, a user may want to assign more
weight to impulse responses at horizons of interest to policymakers. We do not consider this possibility here, since this
option has not been considered in applied work. We do note, however, that the conventional median response function
solves the loss minimization problem under additively separable absolute loss regardless of the weights applied to the
elements of θ, whereas our approach will generate different solutions under absolute loss as well as quadratic loss, as
the weights are varied.
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2.3 Extensions to partially identified models

Although so far we have focused on fully identified structural VAR models, our analysis can be easily

adapted to structural VAR models, in which only a subset of the structural shocks is identified. The

only change is the dimensionality of the θ vector when evaluating the expected loss.6 Otherwise, the

implementation of our methods is unchanged. Like in the fully identified structural VAR model, the

shape of the median response function may be inconsistent with the shape of the impulse response

function implied by any possible parameterization of the underlying autoregressive model, when

there are more structural impulse responses to be estimated than structural model parameters.

The latter situation arises commonly in applied work. For example, Eichenbaum and Evans (1995)

specify a recursive semi-structural model of monetary policy shocks with n = 5 variables, p = 6

autoregressive lags, and H = 35.

2.4 Joint credible sets

There has been growing interest in recent years in quantifying the joint uncertainty of vectors

of VAR impulse response estimates. There is no consensus in the Bayesian literature on how to

construct such credible sets. For example, Berger (1985, p. 145) does not view credible sets as

having a clear decision-theoretic role at all, and therefore is leery of ‘optimality’approaches to the

selection of a credible set. He views credible sets as an easily reportable crude summary of the

posterior distribution.7

In this section, we discuss how to construct joint credible sets for θ̂M under quadratic and under

absolute loss as lowest posterior risk regions. This approach was previously discussed in generic

settings in Bernardo (2010). Our contribution is to make Bernardo’s approach operational in the

6For example, when only one structural shock is identified, as is often the case in structural VAR models of
monetary policy shocks, with this shock ordered last, θ is of length n(H + 1).

7For further discussion see Berger (1985, subsection 4.3.3) and Bernardo and Smith (1994, subsection 5.1.5), for
example.
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context of structural impulse response analysis under a range of alternative assumptions about the

loss function. We define the (1− α)100% joint credible set based on a loss function L(θ, θ) as

Θ1−α,L = {θ ∈ Θ : Eθ(L(θ, θ)) ≤ c1−α,L}, (13)

where c1−α,L is the smallest number such that the posterior probability of Θ1−α,L is 1 − α and L

refers to the loss function. Unlike the conventional credible sets used in the literature, our joint

credible sets are designed to contain only members of the set of structural response functions.

This credible set can be visually approximated based on Monte Carlo draws from the posterior

as

Θ̂1−α,M,QL =

θ ∈ Θ̂M :
1

M

M∑
i=1

nirf∑
j=1

(θ
(i)
j − θj)

2 ≤ c1−α,M,QL

 , (14)

Θ̂1−α,M,AL =

θ ∈ Θ̂M :
1

M

M∑
i=1

nirf∑
j=1

|θ(i)
j − θj | ≤ c1−α,M,AL

 , (15)

where c1−α,M,QL and c1−α,M,AL are the smallest values such that Θ̂1−α,M,QL and Θ̂1−α,M,AL, respec-

tively, have probability 1−α, givenM . In practice, this set may be constructed by sorting 1
M

∑M
i=1 L(θ(i), θ(1)),

1
M

∑M
i=1 L(θ(i), θ(2)),... 1

M

∑M
i=1 L(θ(i), θ(M)), in ascending order and retaining the first (1−α)100%

draws, starting with the draw with the lowest value.

Note that the posterior probability of this set is zero because the joint posterior distribution is

continuous, whereas the proposed set consists of a finite number of elements. However, this set can

be thought of as a visual approximation to the credible set (13) in the following sense.

Proposition 1: Let Q(θ̄) = Eθ[L(θ, θ̄)] and Q̂M (θ̄) = (1/M)
∑M

i=1 L(θ(i), θ̄). Suppose that (i) the

posterior distribution of θ is continuous; (ii) {θ(i)} are iid draws from this posterior distribution;
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(iii) Q(θ̄) and Q̂M (θ̄) are continuous; (iv) c1−α exists; and (v)

sup
θ̄∈Θ

∣∣∣Q̂M (θ̄)−Q(θ̄)
∣∣∣ = oas(1). (16)

Then for every ε > 0 and every θ ∈ Θ1−α that is not an isolated point in Θ1−α,

P (∃θ̂ ∈ Θ̂1−α,M such that ‖θ − θ̂‖ < ε) → 1 (17)

as M →∞.

In other words, as M → ∞, the proposed set will visually approximate the joint credible set

based on the joint posterior of θ arbitrarily well. In the remainder of the paper, we will therefore

refer to this visual approximation to the joint credible set as the joint credible set for short.

2.5 Comparison with conventional error bands

The conventional approach in the literature has been to report posterior median (or mean) response

functions along with pointwise error bands constructed from the upper and lower quantiles of the

marginal posterior distributions of the structural impulse responses. While this approach makes

sense when conducting inference on individual impulse responses, it is readily apparent that this

approach is misguided if we are interested in inference on the vector θ, regardless of whether nirf

exceeds np or not.

Our premise in this paper is that applied researchers are interested in the shape of individual

response function and in the comovement across response functions, which necessarily involves

conducting inference simultaneously across multiple horizons and potentially for multiple variables.

Constructing error bands by stringing together quantiles of the marginal posterior distributions of

individual impulse responses, is akin to arguing that in studying a system of regression equations
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it is suffi cient to base inference on t-test statistics for each coeffi cient in a given equation, ignoring

that the t-statistics are dependent within and across equations. It is immediately obvious that this

approach fails to capture the uncertainty about the vector θ, given that it ignores the dependence

across the elements of θ. The only defense of this approach is that there has been no constructive

alternative to the use of such pointwise error bands until recently. As we have shown, there are

easy-to-implement alternative methods that avoid this drawback, rendering the use of pointwise

error bands obsolete.

By restricting all members of the joint credible set for θ to lie in the set Θ, we not only ensure

that each member of that set is feasible, but that every member of that set satisfies the dependence

structure of the impulse responses. The approximation to the joint credible set for θ proposed

in the previous section will not resemble a conventional error band. Rather, it will look like the

shot-gun trajectories employed in ballistics, with each structural model represented by a set of n2

such trajectories up to horizon H.8 This feature addresses the concern raised by Sims and Zha

(1999) that we need to be able to visualize likely departures from the baseline estimate of θ. Similar

techniques have been employed in Inoue and Kilian (2013, 2016) and a number of applied studies

to characterize the joint estimation uncertainty in structural VAR models.

Of course, in practice, M is typically so large that we cannot distinguish individual response

functions or, for that matter, responses from different structural models. The shotgun trajectory

plot does, however, contain the information required to make these assessments. If we are interested

in evidence that a positive oil price shocks causes stagflation in the U.S. economy, for example, we

may display the response functions that satisfy the definition of a stagflationary response in a differ-

ent color than response functions that do not, as illustrated in Inoue and Kilian (2016). Similarly, if

we are interested in whether the most likely models satisfy the requirement that a monetary policy

8These trajectories are also conceptally similar to the forecast paths reported in weather forecasting, when outlining
the predicted path of a hurricane.
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shock raises the interest rate, lowers the price level and lowers real output, as discussed by Sims

and Zha (1999), we can plot the responses for this subset of structural models in a different color.

We can also make probability statements about the conditional comovement of several response

functions contained in the joint credible set. Finally, if we are interested in the shape of a given

impulse response function, we can directly assess whether the response function is hump-shaped or

whether there is delayed overshooting, for example, by highlighting these responses in a different

color. We illustrate how information about the shape and comovement of the response functions

can be visualized in section 5. Further discussion of techniques for extracting such information

from shot-gun trajectory plots can be found in Inoue and Kilian (2016).9

It is also possible to report two-dimensional joint impulse response error bands based on the

posterior draws of θ. Reporting such joint error bands protects users from overly optimistic conclu-

sions about the reliability of their impulse response estimates. For example, one could construct the

simultaneous credible error band proposed by Montiel Olea and Plagborg-Møller (2019) with the

tail probability calibrated to yield simultaneous credibility 1−α. An even simpler approach would

to bound the joint credible set by constructing the upper and lower envelope around the response

estimates in the credible region.10 Even when posterior median (or mean) response functions are

numerically close to θ̂M , joint error bands for θ in general will differ from conventional pointwise

error bands.
9One may object that if we care about features such as hump-shaped responses, we could instead use a loss function

that reflects this objective. This would allow the user to directly evaluate the posterior support for a hump shape.
In practice, however, one cannot target all possible objectives a potential user may have in mind. It therefore makes
sense for researchers to settle on default conventions for reporting impulse response estimates that allow users with
different objectives to extract as much information as possible from the impulse response plot. This is indeed the
approach typically taken both in the Bayesian and in the frequentist structural VAR literature (e.g., Montiel Olea
and Plagborg-Møller 2019). Moreover, it is often the impulse response plots that first suggest what feature might be
interesting to consider.
10 It should be noted that when nirf > np, one cannot rule out that the credible region is disjoint Identifying

disjoint regions is a challenge in practice for computational reasons. One never knows whether a region is truly
disjoint or whether the number of posterior draws is too small. This is especially true near the edges of the credible
region. If one were to plot the envelope ignoring any disjoint regions within this band, the resulting joint error band
would still have the intended probability content, but would effectively be greater than desirable when there are
disjoint regions. This problem is not unique to this approach. Similar problems affl ict other two-dimensional error
bands.
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While joint error bands capture the extent of the estimation uncertainty about the impulse

responses, it is important to understand that they are not a substitute for a plot of the trajectories.

First, these joint error bands, much like conventional pointwise error bands, need not be contained

in the set Θ of feasible solutions. Second, by focusing on error bands rather than the shot-gun

trajectory plots, we lose some information of interest to applied users. For example, we lose the

information required to judge whether the response of output to a monetary policy shock is hump-

shaped. It also becomes impossible to tell whether posterior draws involving a stronger decline in

output, for instance, are more or less inflationary than other posterior draws. Such questions can

only be answered based on the information contained in the shot-gun trajectory plots.

3 Joint inference under Dirac delta loss

Although the traditional approach in applied studies has been to focus on absolute or quadratic loss

functions, respectively, starting with Inoue and Kilian (2013, 2019) there has been growing interest

in the application of the Dirac delta loss function to structural impulse response analysis.11 Unlike

the quadratic and absolute loss functions considered in section 2, the Dirac delta loss function is

not additively separable. We assume for now that the structural VAR model is fully identified.

Let θ denote the n2(H + 1) × 1 vector of structural impulse response functions that satisfy the

identifying restrictions, where θ ∈ Θ. As before, Θ is a lower-dimensional smooth manifold when

the number of structural impulse responses to be estimated exceeds the number of structural model

parameters used to construct these responses. We are interested in minimizing in expectation the

Dirac delta loss function, L(θ, θ) = −δ(θ − θ), where δ(·) denotes the Dirac delta function. This

problem is equivalent to maximizing the joint posterior density of θ, which occurs when θ is the

11This approach has been applied in a number of recent studies including Herwartz and Plödt (2016), Herrera and
Rangaraju (2020), Zhou (2020), Cross, Nguyen and Tran (2019) and Rausser and Stürmer (2020).
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posterior mode of the joint posterior density.12

3.1 The most likely impulse response estimate and joint HPD credible sets

The procedure proposed in Inoue and Kilian (2013, 2019) for finding the modal posterior draw is

simple. We first rank the M posterior draws for θ that satisfy the identifying restrictions of the

structural VAR model based on the value of the joint posterior density function f(θ|y1, ..., yT ).

Then the modal (or most likely) posterior draw for θ, denoted θ̂
DDL

M , where DDL stands for Dirac

delta loss, will be the draw with the highest joint posterior value. By construction, the mode of

the joint posterior distribution will be within Θ.

The corresponding 1− α probability joint credible sets may be approximated by retaining the

(1 − α)100% draws for θ with the highest joint posterior density values among the M draws that

satisfy the identifying restrictions. The most likely impulse response estimate may be viewed as

the limit of a joint 1− α probability highest-posterior density (HPD) credible set. As in section 2,

this joint credible set may be approximated by a shot-gun trajectory plot and may be evaluated in

the same way.

The main challenge, in practice, is how to compute the values of the joint posterior density of the

structural impulse responses for each posterior draw. In our earlier work, we analytically derived a

closed-form solution for the function f(·) that makes this approach accurate and computationally

effi cient. In this section, we propose an alternative derivation of this density that is substantially

more general than the expressions derived in Inoue and Kilian (2013, 2019) under the restrictive

assumption that nirf = np.

12The use of the mode has a long tradition in Bayesian inference, as does the use of highest posterior density (HPD)
regions for impulse response inference (e.g., Koop 1996; Zha 1999; Waggoner and Zha 2012; Plagborg-Møller 2019).
Similarly, Sims and Zha (1999) suggest that impulse response inference should focus on deviations from the baseline
estimate that are “most likely”.
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3.2 The joint posterior density of the structural impulse responses

Following Arias et al. (2018), consider a pth-order structural VAR model

y′tA0 =

p∑
j=1

y′t−jAj + c+ ε′t

= x′tA+ + ε′t, for t = 1, 2, ..., T, (18)

where yt is an n×1 vector of observed variables, Aj is an n×nmatrix of parameters for j = 0, 1, ..., p,

c is a 1×n vector of intercepts, εt is an n×1 vector of structural shocks, x′t = [y′t−1 y
′
t−2 · · · y′t−p 1]

and A′+ = [A′1 · · · A′p c′]. A0 is assumed to be nonsingular. The implied reduced-form VAR

representation is

y′t = x′tB + u′t, for t = 1, 2, ..., T, (19)

where B = A+A
−1
0 , u′t = ε′tA

−1
0 and E(utu

′
t) = Σ = (A0A

′
0)−1. The structural VAR model can

also be written in the orthogonal reduced-form parameterization characterized by the reduced-form

parameters B and Σ and an orthogonal matrix Q:

y′t = x′tB + ε′tQ
′P, for t = 1, 2, ..., T, (20)

where P is the lower triangular Cholesky decomposition of Σ with the diagonal elements normalized

to be positive such that PP ′ = Σ and QQ′ = In. Q is also referred to as the rotation matrix. There

is a one-to-one mapping between the parameters (B, Σ, Q) and (A0, A+).

The further analysis differs depending on the nature of the identifying restrictions. We first

discuss the case of structural VAR models that are set-identified by sign restrictions. We then

consider the case of structural VAR models exactly identified by any combination of short-run and
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long-run exclusion restrictions.

3.2.1 Models identified by sign restrictions

The standard approach in the literature is to define a normal-inverse Wishart (NIW ) distribution

over the reduced-form parameters characterized by four parameters: a scalar ν ≥ n, an n × n

symmetric and positive definite matrix Φ, an n(p + 1) × n matrix Ψ, and an n(p + 1) × n(p + 1)

symmetric and positive definite matrix Ω. The density

NIW(ν,Φ,Ψ,Ω)(B,Σ) ∝ |det(Σ)|
ν+n+1

2
e− 1

2
tr(ΦΣ)−1 |det(Σ)|−

m
2 e−

1
2
vec(B−Ψ)′(Σ⊗Ω)−1vec(B−Φ) (21)

can be expressed up to scale as the product of an inverse Wishart density for Σ and a conditionally

normal density for B (see Arias et al. 2018). Conditional on the reduced-form parameters, the

density over the set of orthogonal matrices Q is uniform. This prior is conjugate in that the

corresponding posterior density is of the same functional form.

The key technical difference from Inoue and Kilian (2013, 2019) is that in the current paper

we start with the posterior of A0 and A+, as defined in Arias et al. (2018), whereas in our earlier

work we applied the change-of-variable method to the joint posterior of the reduced-form slope

parameters, the error covariance matrix and the rotation matrix. Given a uniform-normal-inverse-

Wishart family of prior densities for (B,Σ, Q) with parameters ν̄, Φ̄, Ψ̄ and Ω̄, the posterior density

of A0 and A+ is given by

NGN(ν̃,Φ̃,Ψ̃,Ω̃) ∝ |det(A0)|ν̃−ne−
1
2
vec(A0)′(In⊗Φ)vec(A0) × e−

1
2
vec(A+−Ψ̃A0)′(In⊗Ω)−1vec(A+−Ψ̃A0),

(22)

where ν̃ = T + ν̄, Ω̃ = (X ′X + Ω̄−1)−1, Ψ̃ = Ω̃(X ′Y + Ω̄−1Ψ̄), Φ̃ = Y ′Y + Φ̄ + Ψ̄′Ω̄−1Ψ̄− Ψ̃′Ω̃−1Ψ̃,
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Y = [y1 · · · yT ]′ and X = [x1 · · · xT ]′ (see equation 2.8 in Arias et al. 2018).13

Let Θh denote the structural impulse response matrix at horizon h implied by (18). Let JNGN

denote the (H + 1)n2 × n2(min(H, p) + 1) Jacobian matrix of the possibly cumulated impulse

responses in θ = vec([Θ0 Θ1 · · · ΘH ]) with respect to vec([A0 A1 · · · Ap]). The following

proposition, which is a corollary of the results in Arias et al. (2018), states the joint posterior

density of θ.

Proposition 2:

f(θ|y1, ..., yT ) = NGN(ν̃,Φ̃,Ψ̃,Ω̃)|J
′
NGNJNGN |

1
2 . (23)

This result follows from Arias et al.’s (2018) Theorem 2 and their equation 2.8. If the number of

estimated impulse responses (nirf ) is no larger than the number of estimated structural parameters

(np) used in computing these structural responses, f(θ|y1, ..., yT ) simplifies to NGN(ν̃,Φ̃,Ψ̃,Ω̃)|JNGN |.

To make our procedure operational, what remains to be derived is the Jacobian JNGN , which

can be written as the product of four Jacobian matrices. The first Jacobian allows for the fact that

some impulse responses may be cumulated. Let S be the n × n diagonal selection matrix whose

(i, i)th element is one if the impulse response functions of the ith variable are cumulative and is zero

otherwise. Let Ξ denote the uncumulated impulse responses. Then the Jacobian of the cumulative

impulse response functions vec([Ξ0 Ξ0 + Ξ1 · · ·
∑H

j=0 Ξj ]) with respect to noncumulative impulse

13The approach of specifying a marginally uniform prior on the rotation matrix has been standard in the literature
on sign-identified structural VAR models (see, e.g., Rubio-Ramirez et al. 2010; Arias et al. 2018; Antolin-Diaz and
Rubio-Ramirez 2018). As is well known, this prior may be inadvertently informative about the structural impulse
responses. The practical importance of this problem is examined in Inoue and Kilian (2020). An alternative approach
that avoids specifying a prior for the orthogonal matrix Q is discussed in Giacomini and Kitagawa (2020). Another
way to avoid the specification of the Q prior is to specify a prior directly on the parameters of the structural moving
average representation, as discussed in Plagborg-Møller (2019).
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response functions vec([Ξ0 Ξ1 · · · ΞH ]) is the n2(H + 1)× n2(H + 1) matrix

J1 =



In2 0n×n · · · 0n×n

In ⊗ S In2 · · · 0n×n

...
...

. . .
...

In ⊗ S In ⊗ S · · · In2


. (24)

If there are no responses to be cumulated, J1 reduces to the identity matrix and may be dropped.

The second Jacobian matrix is that of vec([Ξ0 · · · ΞH ]) with respect to vec([A′−1
0 Φ1 · · · ΦH ]),

where Φh denotes the reduced-form impulse response matrix at horizon h. Because Ξh = ΦhA
′−1
0 ,

this Jacobian is given by the n2(H + 1)× n2(H + 1) matrix

J2 =



In2 0n2×n2 · · · 0n2×n2

(In ⊗ Φ1) A−1
0 ⊗ In · · · 0n2×n2

...
...

. . .
...

(In ⊗ ΦH) 0n2×n2 · · · A−1
0 ⊗ In


. (25)

The third Jacobian matrix is that of vec([A′−1
0 Φ1 · · · ΦH ]) with respect to vec([A0 B1 · · · Bmin(p,H)]),

where Bi = AiA
−1
0 , i = 1, ..., p. If H ≤ p, this Jacobian is given by the n2(H + 1) × n2(H + 1)

matrix

J3 =



−(A−1
0 ⊗A

′−1
0 )Kn 0n2×n2 0n2×n2 · · · 0n2×n2

0n2×n2 In2 0n2×n2 · · · 0n2×n2

0n2×n2 X(Φ2, B1) In2 · · · 0n2×n2

...
...

...
. . .

...

0n2×n2 X(ΦH , B1) X(ΦH , B2) · · · In2


. (26)

where Kn is the n2 × n2 commutation matrix, vec(A′0) = Knvec(A0), and X(Φi, Bj) denotes the
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n2 × n2 Jacobian matrix of vec(Φi) with respect to vec(Bj). It follows from equation (A.25) in

Cheng, Han and Inoue (2020) that

[X(Φi, B1) X(Φi, B2) · · · X(Φi, Bp)] =
i−1∑
k=0

(M ′F k′ ⊗ Φi−1−k)(Ip ⊗Kn), (27)

where M = [In 0n×n(p−1)]
′ and

F =

 B′1 B′2 · · · B′p

0n(p−1)×n In(p−1)

 . (28)

If H > p, in contrast, the third Jacobian is given by the n2(H + 1)× n2(p+ 1) matrix

J3 =



−(A−1
0 ⊗A

′−1
0 )Kn 0n2×n2 0n2×n2 · · · 0n2×n2

0n2×n2 In2 0n2×n2 · · · 0n2×n2

0n2×n2 X(Φ2, B1) In2 · · · 0n2×n2

...
...

...
. . .

...

0n2×n2 X(Φp, B1) X(Φp, B2) · · · In2

0n2×n2 X(Φp+1, B1) X(Φp+1, B2) · · · X(Φp+1, Bp)

...
...

...
. . .

...

0n2×n2 X(ΦH , B1) X(ΦH , B2) · · · X(ΦH , Bp)



. (29)

The fourth Jacobian matrix is that of vec([A0 B1 · · · Bmin(p,H)]) with respect to vec([A0 A1 · · · Amin(p,H)])
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and is given by the n2(min(p,H) + 1)× n2(min(p,H) + 1) matrix

J4 =



In2 0n2×n2 · · · 0n2×n2

−(A1A
−1
0 ⊗A

′−1
0 )Kn (In ⊗A′−1

0 )Kn · · · 0n2×n2

...
...

. . .
...

−(Amin(p,H)A
−1
0 ⊗A

′−1
0 )Kn 0n2×n2 · · · (In ⊗A′−1

0 )Kn


. (30)

Thus, the Jacobian JNGN = J1J2J3J4 is of dimension n2(H + 1)× n2(min(p,H) + 1). This matrix

becomes very large in typical macroeconomic applications. Although its determinant simplifies to

|A0|−(H+1)n when H ≤ p, it does not simplify, when H > p. This poses a computational challenge.

We work around this problem by using the LU decomposition and computing the sum of the log

of the diagonal elements for the log of the Jacobian determinant.14

The implementation of this algorithm can be summarized in four steps:

1. Draw A0 and A+ from the NGN posterior distribution. From this draw, construct θ subject

to the maintained sign restrictions.

2. Evaluate the NGN kernel in equation (23) at this posterior draw and multiply the kernel by

|J ′NIWJNIW |
1/2 where |·| denotes the determinant to obtain the log posterior value for this

draw.

3. Repeat steps 1 and 2 M times and sort the posterior draws in descending order by the value

of the log posterior computed in step 2.

4. The modal value of θ corresponds to the first element of the sorted log posterior values. The

100(1−α)% joint credible set may be approximated based on the values of θ corresponding to

the first [(1− α)M ] elements of the sorted log posterior values, where [·] denotes the integer
14Our code utilizes the function logdet.m, provided on the Mathwork file exchange. c© 2009, Dahua Lin.
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part.

3.2.2 Models exactly identified by short-run and/or long-run exclusion restrictions

Consider the NIW family of priors for the reduced-form parameters. Suppose that there are n(n−1)
2

short-run and/or long-run exclusion restrictions of the form

C

 vec(A−1′
0 )

vec(B(1)−1A−1′
0 )

 = 0n(n−1)
2
×1
, (31)

where C is a n(n−1)
2 × 2n2 matrix of constants and B(1) = In − B1 − · · · − Bp is assumed to be

invertible. The rank of C is assumed to be n(n− 1)/2. Typically, each of the rows of C consists of

a 1 and 2n2 − 1 0’s. We assume that there is a unique A0 that satisfies A−1′
0 A−1

0 = Σ given (31).

In this case the joint posterior density of θ, defined to include the elements of θ that are restricted

to be zero, can be derived directly from the posterior density of the reduced-form parameters,

building on the results in Arias et al. (2018). The following proposition, which is not a special case

of Proposition 2, states the joint posterior density of θ (up to scale).

Proposition 3:

f(θ|y1, ..., yT ) = NIW(ν̃,Φ̃,Ψ̃,Ω̃)|J
′
NIWJNIW |

1
2 , (32)

where JNIW = J1J2J3D
−1N . D and N are the n2(min(p,H) + 1) × n2(min(p,H) + 1) and
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n2(min(p,H) + 1)× n(n+1)
2 + n2 min(p,H) matrices

D =



−D+
n (A−1′

0 ⊗ Σ + (Σ⊗A−1′
0 )Kn) 0

C

 (A−1
0 ⊗A

−1′
0 )Kn

(A−1
0 ⊗B(1)−1A−1′

0 )Kn

 0

0 I


, (33)

N =



I 0

0 C

 0

`′min(p,H) ⊗ (A−1
0 B(1)−1′ ⊗B(1)−1)


0 I


, (34)

where D+
n = (D′nDn)−1D′n, Dn is the n2× n(n+1)

2 duplication matrix such that vec(Σ) = Dnvech(Σ)

and `min(p,H) is the min(p,H)× 1 vector of ones.

Proof: Because the posterior distribution of B and Σ is NIW(ν̃,Φ̃,Ψ̃,Ω̃), we only need to find the Jaco-

bian matrix JNIW for transforming [vech(Σ)′ vec[B1 · · · Bmin(p,H)]
′]′ to θ = vec([Θ0 Θ1 · · · ΘH ]),

taking into account any zero restrictions in (31).

This Jacobian matrix is the product of four Jacobian matrices. The first three of these matrices

are the same as J1, J2 and J3 in Proposition 2, whereas J4 is replaced by the Jacobian matrix of

vec([A0 B1 · · · Bmin(p,H)]) with respect to [vech(Σ)′ vec([B1 . . . Bmin(p,H)])
′]. The differential of

(31) with respect to vec[A0 B1 · · · Bmin(p,H)] is

C

 −(A−1
0 ⊗A

−1′
0 )Kn 0

−(A−1
0 ⊗B(1)−1A−1′

0 )Kn `′min(p,H) ⊗ (A−1
0 B(1)−1′ ⊗B(1)−1)

 = 0. (35)
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Thus the differential of vec([A0 B1 · · · Bmin(p,H)]) can be written as



−D+
n (A−1′

0 ⊗ Σ + (Σ⊗A−1′
0 )Kn) 0

C

 (A−1
0 ⊗A

−1′
0 )Kn

(A−1
0 ⊗B(1)−1A−1′

0 )Kn

 0

0 I



 vec(dA0)

vec([dB1 · · · dBmin(p,H)])



=



I 0

0 C

 0

`′min(p,H) ⊗ (A−1
0 B(1)−1′ ⊗B(1)−1)


0 I



 vech(dΣ)

vec([dB1 · · · dBmin(p,H)])

 . (36)

It follows from Theorem 2 of Arias et al. (2018) that the volume element is given by

|J ′NIWJNIW |
1
2 (37)

where JNIW = J1J2J3D
−1N.

This proposition extends the analysis in Inoue and Kilian (2013) to nonrecursive exactly iden-

tified models based on any combination of short-run and long-run exclusion restrictions, while

relaxing the assumption that nirf = np. It also covers, as a special case, models identified based on

long-run exclusion restrictions only and models that are recursively identified by zero restrictions

on the structural impact multiplier matrix. For nirf = np, our results for the latter model match

the closed-form solution derived in Inoue and Kilian (2013, 2019).

The implementation of this algorithm can be summarized in four steps:

1. Draw B and Σ from their NIW(ν̃,Φ̃,Ψ̃,Ω̃) posterior distribution. From this draw, construct θ

subject to the maintained short-run and/or long-run exclusion restrictions.
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2. Evaluate the NIW kernel in equation (21) at this posterior draw and multiply the kernel by

|J ′NIWJNIW |
1/2, where |·| denotes the determinant to obtain the log posterior value for this

draw.

3. Repeat steps 1 and 2 M times and sort the posterior draws in descending order by the value

of the log posterior computed in step 2.

4. The modal value of θ corresponds to the first element of the sorted log posterior values. The

100(1−α)% joint credible set may be approximated based on the values of θ corresponding to

the first [(1− α)M ] elements of the sorted log posterior values, where [·] denotes the integer

part.

3.3 Discussion

Our analysis of the Dirac delta loss function contributes to the literature in three dimensions. First,

whereas in our earlier work on fully identified recursive and sign-identified structural VAR models

we focused on the case of nirf = np, in the current paper, Propositions 2 and 3 allow for nirf ≤ np

as well as for nirf > np. It should be noted that the first nirf < np responses of the modal

model obtained from the joint posterior distribution derived under the assumption that there are

np responses, will not in general coincide with the responses of the modal model derived under

the assumption that nirf < np because the minimizer of the expected loss may change with the

dimension of θ.

Second, Propositions 2 and 3 cover not only the recursively identified and sign-identified struc-

tural VAR models studied by Inoue and Kilian (2013). They also enable us to deal with structural

VAR models for which the joint posterior density of the structural impulse responses has not

been derived to date. One example is nonrecursive models based on short-run and/or long-run

restrictions. Another example is models based on combinations of sign and zero restrictions in the
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structural impact multiplier matrix. Especially the latter extension is practically important. Ap-

plications of structural VAR models to the transmission of global shocks to the domestic economy

tend to be block recursive (e.g., Cushman and Zha 1997; Zha 1999). When global and/or domestic

shocks are identified by sign restrictions, this results in a structural VAR model that combines

sign and zero restrictions on A−1
0 (e.g., Mumtaz and Surico 2009; Kilian and Zhou 2020a) Simi-

lar situations arise, more generally, in sign-identified models when the feedback from one variable

to another is delayed by informational or institutional frictions (e.g., Mountford and Uhlig 2009;

Aastveit, Bjørnland and Thorsrud 2015; Nam and Wang 2018; Kilian and Zhou 2020b).

When imposing additional zero restrictions on the structural impact multiplier matrix of the

model, Proposition 2 may be applied with selected elements of A−1
0 restricted to be zero and

included in θ. When evaluating a model that combines zero and sign restrictions on the structural

impact multiplier matrix, the posterior draws must be reweighted based on the importance sampler

described in Arias et al. This reweighting changes the joint posterior density. The new joint density

may be constructed by reweighting the density in Proposition 2 by the importance sampling weights.

This requires adding the log of the respective importance sampling weight to the corresponding log

joint posterior density value based on Proposition 2, before computing the estimator and credible

set under Dirac delta loss.

Third, Proposition 2 generalizes the results in Inoue and Kilian (2013, 2019) by allowing for

the imposition of additional narrative inequality restrictions in sign-identified models (with or

without additional zero restrictions), as discussed in Antolin-Diaz and Rubio-Ramirez (2018). Since

narrative restrictions restrict the likelihood, they require the reweighting of the posterior draws

based on the importance sampler described in Antolin-Diaz and Rubio-Ramirez (2018). Proposition

2 may be adjusted for the reweighting of the joint posterior density values for each posterior draw
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as in the case of exclusion restrictions on elements of A−1
0 .15

3.4 Extensions to partially identified models

The derivations in section 3 are for fully identified structural VAR models. It is conceptually

straightforward to extend the analysis under Dirac delta loss to partially identified structural VAR

models. This requires the user to integrate out by numerical methods the elements of θ in the

joint posterior distribution that are not identified (see Inoue and Kilian 2013). For example, in

the model of Uhlig (2005) one would integrate out all responses to shocks other than the monetary

policy shock. It should be noted, however, that this Monte Carlo integration approach is much

more computationally costly than evaluating the relevant subset of θ under quadratic or absolute

loss.

4 Further Extensions

4.1 An Alternative Loss Function

One drawback of the absolute and quadratic loss function is that the Bayes estimator may change,

depending on the scaling of the data. This is not of particular concern when all variables are ex-

pressed in the same units (say, percentage growth rates), but becomes relevant when some variables

are measured on a different scale than others. Intuitively, under absolute loss or quadratic loss,

variables measured on smaller scales will receive less weight in computing the Bayes estimator.

This problem does not arise under Dirac delta loss.

A second drawback that affects all conventional loss functions is that the Bayes estimator may

15 It should be noted that one does not necessarily have to estimate the structural VAR model in the notation used
by Arias et al. (2018) and Antolin-Diaz and Rubio-Ramirez (2018) to make use of our results. When using existing
code, VAR model estimates can typically be expressed in terms of A0 and A+ matrices for the purpose of evaluating
the posterior density value of a given posterior draw without having to re-simulate the posterior draws using their
notation.
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be sensitive to the scaling of the structural shocks. For example, the scale of the responses and hence

the Bayes estimator is affected by whether we compute the response to a one standard deviation

shock, as is standard in the structural VAR literature, or we normalize the structural shock to

represent a unit shock for one of the model variables. Scaling shocks to represent unit shocks is

rare in structural VAR analysis, given that structural shocks affect more than one variable and a

shock can be normalized to have a unit impact in one dimension only, but it is desirable for the

optimal estimator not to be sensitive to such normalizations.

In this subsection, we consider an alternative loss function that is invariant to both the scale

of the data and the scale of the responses. Let A denote a diagonal matrix of the scales of the

variables, B the matrix of structural impulse responses at horizon h, and C a diagonal matrix of the

magnitudes of the structural shocks underlying the response functions. Then ABC is the matrix

of the structural impulse responses at horizon h given these normalizations. Because vec(ABC) =

(C ′⊗A)vec(B), the vector of structural impulse responses can be written as θ̃ = Dθ where θ is the

original impulse response vector and D is a diagonal matrix whose diagonal elements are functions

of those in A and C.

The objective is for the loss function to be independent of D (and thus of A and B). Let

θij and θ̄ij be vectors of the structural responses of the ith variable to the jth structural shock,

respectively. Then the cosine of the angle between θij and θ̄ij is given by

θij · θ̄ij
‖θij‖‖θ̄ij‖

and is called the cosine similarity. The cosine similarity does not depend on A or C. Because the
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cosine similarity is not a distance, we define the angular loss by

L(θ, θ̄) =
1

πn2

n∑
i=1

n∑
j=1

cos−1

(
θij · θ̄ij
‖θij‖‖θ̄ij‖

)

which is the average of the angular distances between θij and θ̄ij for i, j = 1, 2..., n. Minimizing this

loss function in expectation with respect to the joint posterior distribution of θ yields the optimal

estimator under angular loss. The corresponding (1 − α)100% joint credible set is approximated

by retaining the (1− α)100% draws for θ with the smallest angular loss among the M draws that

satisfy the identifying restrictions. The computational cost of this estimator is higher than that of

the estimator under absolute loss or quadratic loss, especially when M is very large. As shown in

section 5, the use of this loss function tends to generate estimates quite similar to those obtained

under conventional loss functions.

4.2 Dealing with Non-Unique Solutions

Whereas the Bayes estimator is unique under absolute and quadratic loss when nirf ≤ np, for

nirf > np there may be situations in which more than one posterior draw minimizes the loss function

in expectation. More generally, under Dirac delta loss and angular loss, the Bayes estimator need

not be unique, even when nirf ≤ np. This does not affect the construction of the joint credible set,

but calls for a change in the construction of the Bayes estimator. Recall that the infeasible version

of our Bayes estimator is

Θ0 = {θ̄ ∈ Θ : Eθ[L(θ, θ̄)] ≤ Eθ[L(θ, θ̃)] for ∀ θ̃ ∈ Θ} (38)

where the expectations are with respect to the joint posterior distribution of θ. When nirf > np,

Θ0 is not necessarily a singleton. Since it is diffi cult to determine a priori whether the solution is
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unique or not, it is useful to have a diagnostic tool for assessing this question. A practical solution

to this problem inspired by Chernozhukov, Hong and Tamer’s (2007), is to first estimate

̂̄θM = argmin
θ̄∈Θ̂M

1

M

M∑
i=1

L(θ(i), θ̄), (39)

where Θ̂M consists ofM posterior draws and θ(i) denotes the ith posterior draw. Then the estimate

of the set Θ0, for a given loss function, is given by

Θ̂0,M = {θ ∈ Θ̂M : 100×
(

1

M

M∑
i=1

L(θ(i), θ̄)− 1

M

M∑
i=1

L(θ(i), ̂̄θM )

)/
1

M

M∑
i=1

L(θ(i), ̂̄θM ) ≤ cM}

(40)

where cM is a sequence of positive numbers that satisfies cM → 0 and 1/(cM
√
M) = o(1) as

M → ∞. In practice, we set cM = log(M)/
√
M , which satisfies these conditions. In short, the

approach is to include all posterior draws in the cM%-neighborhood of the minimum expected loss.

AsM →∞, this neighborhood is shrunk to zero, so in the limit all remaining solutions have exactly

the same expected loss. As the empirical examples in the next section shows, in many cases Θ̂0

consists of a singleton, and, when not, there typically are only two solutions in this set that are

quite similar.

5 Empirical illustrations

In this section, we present two empirical VAR examples based on diffuse Gaussian-inverse Wishart

priors for the reduced-form parameters. All models include an intercept.
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5.1 Example 1

Our first empirical example is a stylized model of the U.S. macroeconomy based on short-run

and long-run exclusion restrictions, as discussed in Rubio-Ramirez, Waggoner and Zha (2010).

This specific example was chosen because models combining short-run and long-run restrictions

are not covered by the theoretical results in Inoue and Kilian (2013, 2019). We specify a quarterly

VAR(4) model for real GNP growth (∆ log Y ), the federal funds rate (R) and GNP deflator inflation

(∆ logP ). Variation in these data is explained in terms of an aggregate demand shock, an aggregate

supply shock, and a monetary policy shock. The identifying restrictions are that aggregate demand

shocks have no long-run effect on real output and that monetary policy shocks have neither an

impact effect on real output nor a long-run effect on real output. The model is exactly identified.

The estimation period is 1954.IV-2007.IV. We solve for the structural impact multiplier matrix,

as discussed in Rubio-Ramirez, Waggoner and Zha (2010). The sign of the monetary policy shock

is normalized to imply an increase in the federal funds rate on impact. The sign of the aggregate

supply shock is normalized to ensure that the aggregate supply shock raises real output on impact.

Given that the structural model is only loosely restricted, we follow the convention of reporting 68%

credible sets. The maximum impulse response horizon is 12 quarters. The number of estimated

structural impulse responses, nirf , exceeds the number of estimated structural parameters, np.

Although we are considering all 9 structural impulse functions when minimizing the expected

loss, in the interest of space, only a subset of the results are shown. Figure 2 focuses on the response

of the model variables to an unanticipated monetary tightening. Such a shock would be expected

to raise the interest rate, lower real GNP and lower GNP deflator inflation. We report estimators

and 68% joint credible regions under each of the four loss functions considered in this paper. For

comparison we also report the conventional posterior median response function and posterior mean

response function in the first row together with the conventional pointwise quantile error bands.
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All results shown are based on M = 5, 000 posterior draws.

Our estimates of θ allow for multiple solutions. As Figure 2 shows, only under quadratic loss,

the estimator is not unique, but the two solutions found by the algorithm are very similar. The

differences in the impulse response estimates across loss functions are comparatively minor. All

estimates indicate a transitory increase in the interest rate and a persistent decline in real GNP.

Inflation is not very responsive. There is no indication that using the angular loss function rather

than conventional loss functions makes much of a difference for the estimates. Angular and absolute

loss imply somewhat tighter joint credible regions than quadratic or Dirac delta loss, as measured

by the range of responses. Although in this example the difference between the Bayes estimator

under absolute and under quadratic loss and the posterior median and mean response functions,

respectively, is small, Figure 2 confirms that the use of pointwise error bands causes the user to

understate the estimation uncertainty at short as well as long horizons. In some cases, the range

spanned by the responses in the joint credible set is three times as wide.

One of the advantages of lowest posterior risk joint credible sets is that we retain information

about the shape of the response functions contained in the joint credible set. One way of high-

lighting this information is to represent the elements of the joint credible region in different colors

differentiated by probability content. Figure 3 demonstrates this approach based on the estimates

obtained under absolute loss.

Even more useful in practice is the ability to highlight in different colors the relationship across

the responses of different model variables. Figure 4, for example, shows in black the subset of

posterior draws that is consistent with a persistent decline in deflator inflation in response to an

unexpected monetary tightening. Figure 4 shows not only that the credible set for the output

responses becomes tighter under this restriction, but posterior draws implying very large interest

rate responses are systematically ruled out. Such information would have been irretrievably lost, if
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we had simply constructed a joint error band by constructing an envelope around the joint credible

set. Other examples have been discussed in Inoue and Kilian (2016). For example, the ability to

plot individual posterior draws for the responses of inflation and output is extremely valuable in

assessing whether oil price shocks are stagflationary for the U.S. economy. It may also be used to

assess whether response functions are hump-shaped or whether there is delayed overshooting.

5.2 Example 2

The second empirical example is a monthly VAR(24) model of the global market for crude oil based

on Kilian and Murphy (2014). The model variables include the percent change in global crude oil

production, an appropriate measure of the global business cycle, the log real price of oil, and

the change in global crude oil inventories. The model differentiates between various shocks to the

demand for oil including flow demand and storage demand and shocks to the flow supply of oil. The

structural shocks in the oil market block are identified based on static and dynamic sign restrictions,

bounds on the impact price elasticities of demand and supply, and narrative restrictions. Unlike

in the earlier example, the structural impulse responses are only set-identified. The estimation

period is 1973.2-2018.6. Details of the construction of the data, of the elasticity bounds, and of the

specification of the narrative restrictions can be found in Zhou (2020).

The model is estimated using a conventional uniform-Gaussian inverse Wishart prior, as de-

scribed in section 3. Because the model is estimated subject to narrative restrictions on the his-

torical decomposition of the real price of oil, the posterior draws have to be reweighted based on

an importance sampler, as described in Antolin-Diaz and Rubio-Ramirez (2018). The maximum

impulse response horizon, H, is 17 months. Thus, the number of estimated structural parameters,

np = n2(p + 1), exceeds the number of estimated structural impulse responses, nirf = n2(H + 1).

As in the previous example, we evaluate the model based on all 16 impulse response functions

39



jointly, but, for illustrative purposes, we report only a subset of the results. Figure 5 reports the

Bayes estimates under each loss function as well the corresponding 68% joint credible sets based

on M = 10, 000 posterior draws. It also reports the conventional pointwise estimates and 68%

pointwise quantile error bands for comparison.

Figure 5 focuses on the response of the real price of oil to selected oil demand and oil supply

shocks. All shocks have been normalized to imply an increase in the real price of oil on impact.

All Bayes estimates are unique and, notwithstanding some minor differences, the estimates are

broadly similar across loss functions. A disruption to the flow of oil supplies causes a modest, but

persistent increase in the real price of oil that declines over time. Positive flow demand shocks

are also associated with a large and persistent increase in the real price of oil. Storage demand

shocks have a similarly large effect on the real price of oil, but that response under most loss

functions declines more quickly than in the case of the flow demand shock. The responses to the

flow demand and storage demand shocks are precisely estimated in that the joint credible region

does not include the zero line at all but the largest horizons. The responses to the flow supply

shock are distinguishable from zero only at short horizons. There is not much difference in the

width of the credible sets across loss functions, as measured by the range of the responses. As in

the previous example, the corresponding pointwise 68% error bands are much too narrow. In some

cases, they do not even contain the Bayes estimate.

6 Concluding remarks

Building on insights in Bernardo (2010), we derived the Bayes estimator of vectors of structural

impulse responses and we proposed approximations to the corresponding lowest posterior risk joint

credible sets under four alternative loss functions. We also generalized the Bayes estimator to allow

for the possibility that the estimator may not be unique.

40



Our analysis shows that under absolute and quadratic loss, respectively, posterior median and

mean response functions are not in general the Bayes estimator of the vector θ of structural impulse

responses obtained by stacking the impulse responses of interest. Specifically, in the empirically

more relevant case of nirf > np, these pointwise estimators will not coincide with the Bayes estima-

tor of θ, even as the number of posterior draws approaches infinity. In contrast, in the empirically

less relevant case of nirf ≤ np. they will recover the Bayes estimator in the limit, although these

estimators are likely to differ in practice, even when the number of posterior draws is large.

Whether nirf > np or nirf ≤ np, conventional pointwise impulse response error bands for θ are

invalid. We showed that pointwise error bands tend to be much too narrow. One advantage of our

approach of approximating joint credible sets for θ under absolute and quadratic loss, respectively,

is that it generates as a by-product the Bayes estimator. Another advantage is that it provides

more information about likely departures from the Bayes estimator than joint error bands. We

showed how visual aids may be used to examine the shape of the response functions as well as the

comovement across structural response functions.

We also derived the Bayes estimator and approximations to the lowest posterior risk joint

credible set under Dirac delta loss, greatly extending the range of applications that can be handled

based on this loss function, which has received increasing attention in the recent literature. Finally,

we considered a new loss function, referred to as angular loss, that renders the Bayes estimator of

θ robust to the scaling of the data and of the structural shocks.

Our empirical evidence suggests that there is little to choose between the absolute, quadratic

and Dirac delta loss based on computational cost in typical applications (except that, in partially

identified models, Dirac delta loss requires the numerical derivation of the marginalized distribu-

tion). The Bayes estimator based on angular loss is more computationally costly when the number

of posterior draws becomes very large. Our two empirical illustrations suggest that the four Bayes
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estimators proposed in this paper tend to generate broadly similar results.

Our theoretical analysis relied on the standard Bayesian approach to estimating structural VAR

models as discussed in Rubio-Ramirez, Waggoner and Zha (2010), Arias et al. (2018) and Antolin-

Diaz and Rubio-Ramirez (2018). The Bayes estimators and joint credible sets we derived under

additively separable quadratic and absolute loss may also be directly applied to the alternative

Bayesian approaches discussed in Baumeister and Hamilton (2018) and Plagborg-Møller (2019). We

leave for future research the question of how to derive analogous results for the joint posterior density

of the structural impulse responses under their assumptions, as required for the implementation of

the Bayes estimator under Dirac delta loss.

Although we focus on VAR impulse response analysis, it should be noted that the same tech-

niques for estimation and joint inference may also be adapted to other vector valued VAR statistics

such as forecast error variance decompositions and historical decompositions or the estimation of

sequences of structural shocks. Beyond structural VAR modeling, our approach could also be eas-

ily adapted to estimate the path of a forecast and to characterize the joint uncertainty about this

path. For example, during economic crises policymakers are routinely concerned with forecasting

the path of the recovery over the next year or two. They are not interested in forecasting economic

outcomes in a specific quarter in isolation. Under absolute or quadratic loss, the methods we de-

veloped for impulse response analysis may be directly applied to a panel of M posterior draws of

economic forecasts across multiple horizons to recover a Bayes estimate of the forecast path and of

the associated joint credible region.

Our approach may also be used for the evaluation of impulse responses based on Bayesian

estimates of DSGE models. For example, Herbst and Schorfheide (2015) report posterior mean

response functions and pointwise quantile error bands computed based on draws from the posterior

distribution of the structural DSGE model parameters. Such estimates are subject to the same
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concerns as posterior mean response functions in structural VAR models. The posterior mean

response function may generate estimates inconsistent with the DSGE model structure, if the

number of responses exceeds the number of structural DSGE model parameters, and the pointwise

error bands by construction misrepresent the uncertainty about the response functions. It would be

straightforward to employ the tools we developed under quadratic loss or absolute loss to address

this concern. Extensions to Dirac delta loss would be more involved and would likely involve

numerical differentiation.

Finally, our tools can be adapted to formally characterize the joint prior of the impulse responses

in sign-identified VAR models and to examine how sensitive the posterior is to this prior. This

question has recently been at the forefront of the debate about the use of conventional priors in

estimating sign-identified VAR models and the reliability of the resulting posterior estimates. A

detailed analysis can be found in Inoue and Kilian (2020).
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Appendix: Proof of Proposition 1

First, we show that ĉ1−α,M = c1−α + oas(1). Note that

|Pθ(Q(θ) ≤ ĉ1−α)− (1− α)|

=
∣∣∣Pθ(Q(θ) ≤ ĉ1−α)− Pθ

(
Q̂M (θ) ≤ ĉ1−α

)
+Pθ

(
Q̂M (θ) ≤ ĉ1−α

)
− (1− α)

∣∣∣
=

∣∣∣Pθ (Q̂M (θ) ≤ ĉ1−α
)
− (1− α)

∣∣∣+ o(1)

=
∣∣∣Pθ (Q̂M (θ) ≤ ĉ1−α

)
− P̂θ,M

(
Q̂M (θ) ≤ ĉ1−α,M

)∣∣∣+ o(1)

= oas(1), (A.1)

where the second equality follows from assumptions (i) and (v), the third equality follows from the

definition of ĉ1−α,M and the last equality follows from (ii) and (iii). This result and assumption

(iv) imply ĉ1−α,M ≥ c1−α + oas(1). Using similar arguments, we obtain

∣∣∣P̂θ,M (Q̂M (θ) ≤ c1−α
)
− (1− α)

∣∣∣ = oas(1) (A.2)

which implies c1−α ≥ ĉ1−α + oas(1). Thus, we have ĉ1−α = c1−α + oas(1).

Next, let θ ∈ Θ1−α. Because θ is not an isolated point in Θ1−α, {θ̄ ∈ Θ : ‖θ − θ̄‖ < ε} ∩Θ1−α

has a positive posterior probability. Because Q̂M (θ) = Q(θ) + oas(1) and ĉ1−α,M = c1−α + oas(1),

the probability that {θ̄ ∈ Θ : ‖θ − θ̄‖ < ε} ∩ Θ̂1−α,M is nonempty approaches one as M goes to

infinity. Therefore, (17) follows.
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Figure 1: AR(1) example of how median response functions may distort the shape of the  
impulse response function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
NOTES: Responses generated from slope parameter in AR(1) model with posterior ~ ( ,1 / )mean Tn  with 

0.7mean  and 0.769.Tn   All estimates are based on 10,000 random draws from the posterior.



 

Figure 2: Responses to exogenous U.S. real interest rate shock: 68% joint credible set under alternative loss functions with  
Bayes estimates highlighted in black 
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NOTES: Pointwise estimates, when available, are shown as dotted lines for comparison. 



 

Figure 3: Responses to exogenous U.S. real interest rate shock:  
Bayes estimate under absolute loss and  

joint credible regions with various probability contents 
 

 
 

NOTES: Red:  17%. Magenta: 34% Green: 51% Yellow: 68% probability content. 
 

Figure 4: Responses to exogenous U.S. real interest rate shock:  
68% joint credible set under absolute loss with posterior 

draws that generate a persistent decline in inflation highlighted in black 
 

 



 

Figure 5: Responses of the Real Price of Oil: 
68% joint credible set under alternative loss functions with Bayes estimates highlighted in black 
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NOTES: Pointwise estimates, when available, are shown as dotted lines for comparison. 
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